Search results for "STRUCTURAL VARIATION"
showing 10 items of 12 documents
Population genetic analysis of bi-allelic structural variants from low-coverage sequence data with an expectation-maximization algorithm
2014
Background Population genetics and association studies usually rely on a set of known variable sites that are then genotyped in subsequent samples, because it is easier to genotype than to discover the variation. This is also true for structural variation detected from sequence data. However, the genotypes at known variable sites can only be inferred with uncertainty from low coverage data. Thus, statistical approaches that infer genotype likelihoods, test hypotheses, and estimate population parameters without requiring accurate genotypes are becoming popular. Unfortunately, the current implementations of these methods are intended to analyse only single nucleotide and short indel variation…
Analysis of extended genomic rearrangements in oncological research.
2007
Screening for genomic rearrangements is a fundamental task in the genetic diagnosis of many inherited disorders including cancer-predisposing syndromes. Several methods were developed for analysis of structural genomic abnormalities, some are targeted to the analysis of one or few specific loci, others are designed to scan the whole genome. Locus-specific methods are used when the candidate loci responsible for the specific pathological condition are known. Whole-genome methods are used to discover loci bearing structural abnormalities when the disease-associated locus is unknown. Three main approaches have been employed for the analysis of locus-specific structural changes. The first two a…
Whole-genome resequencing of Cucurbita pepo morphotypes to discover genomic variants associated with morphology and horticulturally valuable traits
2019
[EN] Cucurbita pepo contains two cultivated subspecies, each of which encompasses four fruit-shape morphotypes (cultivar groups). The Pumpkin, Vegetable Marrow, Cocozelle, and Zucchini Groups are of subsp. pepo and the Acorn, Crookneck, Scallop, and Straightneck Groups are of subsp. ovifera. Recently, a de novo assembly of the C. pepo subsp. pepo Zucchini genome was published, providing insights into its evolution. To expand our knowledge of evolutionary processes within C. pepo and to identify variants associated with particular morphotypes, we performed whole-genome resequencing of seven of these eight C. pepo morphotypes. We report for the first time whole-genome resequencing of the four…
Genome-wide association study between CNVs and milk production traits in Valle del Belice sheep.
2019
Copy number variation (CNV) is a major source of genomic structural variation. The aim of this study was to detect genomic CNV regions (CNVR) in Valle del Belice dairy sheep population and to identify those affecting milk production traits. The GO analysis identified possible candidate genes and pathways related to the selected traits. We identified CNVs in 416 individuals genotyped using the Illumina OvineSNP50 BeadChip array. The CNV association using a correlation-trend test model was examined with the Golden Helix SVS 8.7.0 tool. Significant CNVs were detected when their adjusted p-value was <0.01 after false discovery rate (FDR) correction. We identified 7,208 CNVs, which gave 365 C…
The Structural Variety and Metabolism of Proteins
1994
Individual eukaryote cells contain in the order of 104 different proteins, and each animal species contains an even greater number due to differences between the tissues of an individual and between the individuals themselves; furthermore, the protein spectrum changes during the course of development. The number of different proteins to be found in extant organisms may be as high as 1012. The description of this variety, its origin and biological significance is the most extensive theme in comparative biochemistry. This chapter will concern itself with the possibilities for structural variation and the general metabolism of proteins; further chapters will deal with comparative studies of in…
Integrative analysis of structural variations using short-reads and linked-reads yields highly specific and sensitive predictions.
2020
Genetic diseases are driven by aberrations of the human genome. Identification of such aberrations including structural variations (SVs) is key to our understanding. Conventional short-reads whole genome sequencing (cWGS) can identify SVs to base-pair resolution, but utilizes only short-range information and suffers from high false discovery rate (FDR). Linked-reads sequencing (10XWGS) utilizes long-range information by linkage of short-reads originating from the same large DNA molecule. This can mitigate alignment-based artefacts especially in repetitive regions and should enable better prediction of SVs. However, an unbiased evaluation of this technology is not available. In this study, w…
Genomic Analysis of European Drosophila melanogaster Populations Reveals Longitudinal Structure, Continent-Wide Selection, and Previously Unknown DNA…
2020
Genetic variation is the fuel of evolution, with standing genetic variation especially important for short-term evolution and local adaptation. To date, studies of spatiotemporal patterns of genetic variation in natural populations have been challenging, as comprehensive sampling is logistically difficult, and sequencing of entire populations costly. Here, we address these issues using a collaborative approach, sequencing 48 pooled population samples from 32 locations, and perform the first continent-wide genomic analysis of genetic variation in European Drosophila melanogaster. Our analyses uncover longitudinal population structure, provide evidence for continent-wide selective sweeps, ide…
On the power and the systematic biases of the detection of chromosomal inversions by paired-end genome sequencing
2013
One of the most used techniques to study structural variation at a genome level is paired-end mapping (PEM). PEM has the advantage of being able to detect balanced events, such as inversions and translocations. However, inversions are still quite difficult to predict reliably, especially from high-throughput sequencing data. We simulated realistic PEM experiments with different combinations of read and library fragment lengths, including sequencing errors and meaningful base-qualities, to quantify and track down the origin of false positives and negatives along sequencing, mapping, and downstream analysis. We show that PEM is very appropriate to detect a wide range of inversions, even with …
Whole genome paired-end sequencing elucidates functional and phenotypic consequences of balanced chromosomal rearrangement in patients with developme…
2019
BackgroundBalanced chromosomal rearrangements associated with abnormal phenotype are rare events, but may be challenging for genetic counselling, since molecular characterisation of breakpoints is not performed routinely. We used next-generation sequencing to characterise breakpoints of balanced chromosomal rearrangements at the molecular level in patients with intellectual disability and/or congenital anomalies.MethodsBreakpoints were characterised by a paired-end low depth whole genome sequencing (WGS) strategy and validated by Sanger sequencing. Expression study of disrupted and neighbouring genes was performed by RT-qPCR from blood or lymphoblastoid cell line RNA.ResultsAmong the 55 pat…
Pan-cancer analysis of whole genomes
2020
Publisher's version (útgefin grein)